Stability of Generalized Additive Cauchy Equations
نویسنده
چکیده
A familiar functional equation f(ax+b) = cf(x) will be solved in the class of functions f : R → R. Applying this result we will investigate the Hyers-Ulam-Rassias stability problem of the generalized additive Cauchy equation f ( a1x1+···+amxm+x0 )= m ∑ i=1 bif ( ai1x1+···+aimxm ) in connection with the question of Rassias and Tabor.
منابع مشابه
Approximate solutions of homomorphisms and derivations of the generalized Cauchy-Jensen functional equation in $C^*$-ternary algebras
In this paper, we prove Hyers-Ulam-Rassias stability of $C^*$-ternary algebra homomorphism for the following generalized Cauchy-Jensen equation $$eta mu fleft(frac{x+y}{eta}+zright) = f(mu x) + f(mu y) +eta f(mu z)$$ for all $mu in mathbb{S}:= { lambda in mathbb{C} : |lambda | =1}$ and for any fixed positive integer $eta geq 2$ on $C^*$-ternary algebras by using fixed poind alternat...
متن کاملGeneralized Hyers-Ulam Stability of Quadratic Functional Equations: A Fixed Point Approach
The stability problem of functional equations originated from a question of Ulam 1 concerning the stability of group homomorphisms. Hyers 2 gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ theorem was generalized by Aoki 3 for additive mappings and by Rassias 4 for linear mappings by considering an unbounded Cauchy difference. The paper of Rassias 4 has ...
متن کاملStability of Quartic Functional Equations in the Spaces of Generalized Functions
One of the interesting questions concerning the stability problems of functional equations is as follows: when is it true that a mapping satisfying a functional equation approximately must be close to the solution of the given functional equation? Such an idea was suggested in 1940 by Ulam 1 . The case of approximately additive mappings was solved by Hyers 2 . In 1978, Rassias 3 generalized Hye...
متن کاملNonlinear Random Stability via Fixed-Point Method
The stability problem of functional equations originated from a question of Ulam 1 concerning the stability of group homomorphisms. Hyers 2 gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ theoremwas generalized byAoki 3 for additive mappings and by Rassias 4 for linear mappings by considering an unbounded Cauchy difference. The paper of Rassias 4 has pr...
متن کامل